wany log - ορισμός. Τι είναι το wany log
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι wany log - ορισμός

THE INVERSE FUNCTION TO A TOWER OF POWERS
Log*; Log star; Log-*; Log-star; Log *; Log* n; Iterated log

Chip log         
  • thumb
  • Chip log in the 18th century
INSTRUMENT USED TO MEASURE THE SPEED OF A SHIP AT SEA
Log (speed); Knot log; Knotted line; Patent log; Speed log; Taffrail log; Logreel; Log reel
A chip log, also called common log, ship log, or just log, is a navigation tool mariners use to estimate the speed of a vessel through water. The word knot, to mean nautical mile per hour, derives from this measurement method.
Chinking         
  • Log cabin at [[Abraham Lincoln Birthplace]]
  • Details of cabin corner joint with squared off logs
  • 1912 photo of a log cabin in Russia by color photography pioneer [[Sergey Prokudin-Gorsky]]
  • The [[Marshal's Cabin]], a hunting lodge of [[Marshal Mannerheim]] in [[Loppi]], [[Finland]]
  • Log cabin in [[Minnesota]], 1890
  • Swedesboro]], New Jersey
  • Replica log cabin at [[Valley Forge]], [[Pennsylvania]]
SIMPLE DWELLING CONSTRUCTED OF LOGS
Log Cabin; Chinking; Log cabins; Log cabin (building); Log Cabin architecture; Log-cabin
·p.pr. & ·vb.n. of Chink.
Log house         
  • An Umgebinde house in far-eastern Germany
  • Corner notch in medieval Norwegian log buildings
  • alt=Close-up of new logs in interior house wall
  • 17th-century log buildings in [[Heidal]], Norway. Corner of a ″loft″ store-house, a horse stable and a log barn
  • alt=Two-story log house in winter, with large porch and dormer roof
  • alt=Front view of two-story log house in summer, with porch and dormer roof
  • Lom Stave Church]] in [[Norway]].
  • Log building in German is known as Blockbau. Farmhouse, [[Bavaria]], Germany
  • Traditional corner notch used in Norway from the 14th century until the present
  • An old log house in [[Pargas]], Finland.
  • Russian-style log house
TYPE OF HOUSE, BUILT FROM WOODEN LOGS; MUCH THE SAME AS A LOG CABIN
Loghouse; Log House; Saddle notch; Saddle Notch; Log homes; Log home; Wooden cabin; Log houses; Log construction; Half-dovetail notching; Saddle notching
A log house, or log building, is a structure built with horizontal logs interlocked at the corners by notching. Logs may be round, squared or hewn to other shapes, either handcrafted or milled.

Βικιπαίδεια

Iterated logarithm

In computer science, the iterated logarithm of n {\displaystyle n} , written log*  n {\displaystyle n} (usually read "log star"), is the number of times the logarithm function must be iteratively applied before the result is less than or equal to 1 {\displaystyle 1} . The simplest formal definition is the result of this recurrence relation:

log n := { 0 if  n 1 ; 1 + log ( log n ) if  n > 1 {\displaystyle \log ^{*}n:={\begin{cases}0&{\mbox{if }}n\leq 1;\\1+\log ^{*}(\log n)&{\mbox{if }}n>1\end{cases}}}

On the positive real numbers, the continuous super-logarithm (inverse tetration) is essentially equivalent:

log n = s l o g e ( n ) {\displaystyle \log ^{*}n=\lceil \mathrm {slog} _{e}(n)\rceil }

i.e. the base b iterated logarithm is log n = y {\displaystyle \log ^{*}n=y} if n lies within the interval y 1 b < n   y b {\displaystyle ^{y-1}b<n\leq \ ^{y}b} , where y b = b b b y {\displaystyle {^{y}b}=\underbrace {b^{b^{\cdot ^{\cdot ^{b}}}}} _{y}} denotes tetration. However, on the negative real numbers, log-star is 0 {\displaystyle 0} , whereas slog e ( x ) = 1 {\displaystyle \lceil {\text{slog}}_{e}(-x)\rceil =-1} for positive x {\displaystyle x} , so the two functions differ for negative arguments.

The iterated logarithm accepts any positive real number and yields an integer. Graphically, it can be understood as the number of "zig-zags" needed in Figure 1 to reach the interval [ 0 , 1 ] {\displaystyle [0,1]} on the x-axis.

In computer science, lg* is often used to indicate the binary iterated logarithm, which iterates the binary logarithm (with base 2 {\displaystyle 2} ) instead of the natural logarithm (with base e).

Mathematically, the iterated logarithm is well-defined for any base greater than e 1 / e 1.444667 {\displaystyle e^{1/e}\approx 1.444667} , not only for base 2 {\displaystyle 2} and base e.